3.415 \(\int \frac{\sinh (c+d x) \tanh ^2(c+d x)}{(e+f x) (a+b \sinh (c+d x))} \, dx\)

Optimal. Leaf size=36 \[ \text{Unintegrable}\left (\frac{\sinh (c+d x) \tanh ^2(c+d x)}{(e+f x) (a+b \sinh (c+d x))},x\right ) \]

[Out]

Unintegrable[(Sinh[c + d*x]*Tanh[c + d*x]^2)/((e + f*x)*(a + b*Sinh[c + d*x])), x]

________________________________________________________________________________________

Rubi [A]  time = 0.0811154, antiderivative size = 0, normalized size of antiderivative = 0., number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0., Rules used = {} \[ \int \frac{\sinh (c+d x) \tanh ^2(c+d x)}{(e+f x) (a+b \sinh (c+d x))} \, dx \]

Verification is Not applicable to the result.

[In]

Int[(Sinh[c + d*x]*Tanh[c + d*x]^2)/((e + f*x)*(a + b*Sinh[c + d*x])),x]

[Out]

Defer[Int][(Sinh[c + d*x]*Tanh[c + d*x]^2)/((e + f*x)*(a + b*Sinh[c + d*x])), x]

Rubi steps

\begin{align*} \int \frac{\sinh (c+d x) \tanh ^2(c+d x)}{(e+f x) (a+b \sinh (c+d x))} \, dx &=\int \frac{\sinh (c+d x) \tanh ^2(c+d x)}{(e+f x) (a+b \sinh (c+d x))} \, dx\\ \end{align*}

Mathematica [F]  time = 180.003, size = 0, normalized size = 0. \[ \text{\$Aborted} \]

Verification is Not applicable to the result.

[In]

Integrate[(Sinh[c + d*x]*Tanh[c + d*x]^2)/((e + f*x)*(a + b*Sinh[c + d*x])),x]

[Out]

$Aborted

________________________________________________________________________________________

Maple [A]  time = 0.753, size = 0, normalized size = 0. \begin{align*} \int{\frac{\sinh \left ( dx+c \right ) \left ( \tanh \left ( dx+c \right ) \right ) ^{2}}{ \left ( fx+e \right ) \left ( a+b\sinh \left ( dx+c \right ) \right ) }}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(sinh(d*x+c)*tanh(d*x+c)^2/(f*x+e)/(a+b*sinh(d*x+c)),x)

[Out]

int(sinh(d*x+c)*tanh(d*x+c)^2/(f*x+e)/(a+b*sinh(d*x+c)),x)

________________________________________________________________________________________

Maxima [A]  time = 0., size = 0, normalized size = 0. \begin{align*} -2 \, a^{3} \int -\frac{e^{\left (d x + c\right )}}{a^{2} b^{2} e + b^{4} e +{\left (a^{2} b^{2} f + b^{4} f\right )} x -{\left (a^{2} b^{2} e e^{\left (2 \, c\right )} + b^{4} e e^{\left (2 \, c\right )} +{\left (a^{2} b^{2} f e^{\left (2 \, c\right )} + b^{4} f e^{\left (2 \, c\right )}\right )} x\right )} e^{\left (2 \, d x\right )} - 2 \,{\left (a^{3} b e e^{c} + a b^{3} e e^{c} +{\left (a^{3} b f e^{c} + a b^{3} f e^{c}\right )} x\right )} e^{\left (d x\right )}}\,{d x} + \frac{2 \,{\left (a e^{\left (d x + c\right )} + b\right )}}{a^{2} d e + b^{2} d e +{\left (a^{2} d f + b^{2} d f\right )} x +{\left (a^{2} d e e^{\left (2 \, c\right )} + b^{2} d e e^{\left (2 \, c\right )} +{\left (a^{2} d f e^{\left (2 \, c\right )} + b^{2} d f e^{\left (2 \, c\right )}\right )} x\right )} e^{\left (2 \, d x\right )}} + \frac{\log \left (f x + e\right )}{b f} + \frac{1}{2} \, \int \frac{4 \,{\left (a f e^{\left (d x + c\right )} + b f\right )}}{a^{2} d e^{2} + b^{2} d e^{2} +{\left (a^{2} d f^{2} + b^{2} d f^{2}\right )} x^{2} + 2 \,{\left (a^{2} d e f + b^{2} d e f\right )} x +{\left (a^{2} d e^{2} e^{\left (2 \, c\right )} + b^{2} d e^{2} e^{\left (2 \, c\right )} +{\left (a^{2} d f^{2} e^{\left (2 \, c\right )} + b^{2} d f^{2} e^{\left (2 \, c\right )}\right )} x^{2} + 2 \,{\left (a^{2} d e f e^{\left (2 \, c\right )} + b^{2} d e f e^{\left (2 \, c\right )}\right )} x\right )} e^{\left (2 \, d x\right )}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sinh(d*x+c)*tanh(d*x+c)^2/(f*x+e)/(a+b*sinh(d*x+c)),x, algorithm="maxima")

[Out]

-2*a^3*integrate(-e^(d*x + c)/(a^2*b^2*e + b^4*e + (a^2*b^2*f + b^4*f)*x - (a^2*b^2*e*e^(2*c) + b^4*e*e^(2*c)
+ (a^2*b^2*f*e^(2*c) + b^4*f*e^(2*c))*x)*e^(2*d*x) - 2*(a^3*b*e*e^c + a*b^3*e*e^c + (a^3*b*f*e^c + a*b^3*f*e^c
)*x)*e^(d*x)), x) + 2*(a*e^(d*x + c) + b)/(a^2*d*e + b^2*d*e + (a^2*d*f + b^2*d*f)*x + (a^2*d*e*e^(2*c) + b^2*
d*e*e^(2*c) + (a^2*d*f*e^(2*c) + b^2*d*f*e^(2*c))*x)*e^(2*d*x)) + log(f*x + e)/(b*f) + 1/2*integrate(4*(a*f*e^
(d*x + c) + b*f)/(a^2*d*e^2 + b^2*d*e^2 + (a^2*d*f^2 + b^2*d*f^2)*x^2 + 2*(a^2*d*e*f + b^2*d*e*f)*x + (a^2*d*e
^2*e^(2*c) + b^2*d*e^2*e^(2*c) + (a^2*d*f^2*e^(2*c) + b^2*d*f^2*e^(2*c))*x^2 + 2*(a^2*d*e*f*e^(2*c) + b^2*d*e*
f*e^(2*c))*x)*e^(2*d*x)), x)

________________________________________________________________________________________

Fricas [A]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{\sinh \left (d x + c\right ) \tanh \left (d x + c\right )^{2}}{a f x + a e +{\left (b f x + b e\right )} \sinh \left (d x + c\right )}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sinh(d*x+c)*tanh(d*x+c)^2/(f*x+e)/(a+b*sinh(d*x+c)),x, algorithm="fricas")

[Out]

integral(sinh(d*x + c)*tanh(d*x + c)^2/(a*f*x + a*e + (b*f*x + b*e)*sinh(d*x + c)), x)

________________________________________________________________________________________

Sympy [A]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sinh{\left (c + d x \right )} \tanh ^{2}{\left (c + d x \right )}}{\left (a + b \sinh{\left (c + d x \right )}\right ) \left (e + f x\right )}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sinh(d*x+c)*tanh(d*x+c)**2/(f*x+e)/(a+b*sinh(d*x+c)),x)

[Out]

Integral(sinh(c + d*x)*tanh(c + d*x)**2/((a + b*sinh(c + d*x))*(e + f*x)), x)

________________________________________________________________________________________

Giac [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sinh(d*x+c)*tanh(d*x+c)^2/(f*x+e)/(a+b*sinh(d*x+c)),x, algorithm="giac")

[Out]

Timed out